
NASA Technical Paper 3491

Design Tool for Multiprocessor Scheduling and
Evaluation of Iterative Dataflow Algorithms

Robert L. Jones III

Langley Research Center • Hampton, Virginia

National Aeronautics and Space Administration
Langley Research Center • Hampton, Virginia 23681-000t

April 1995

The use of trademarks or names of manufacturers in this report is for

accurate reporting and does not constitute an official endorsement,

either expressed or implied, of such products or manufacturers by the

National Aeronautics and Space Administration.

Acknowledgments

This paper has benefited from numerous discussions with Sukhamoy

Som of Lockheed Engineering & Sciences Company and Paul Hayes

of the Langley Research Center. Rodrigo Obando of Old Dominion

University and Asa Andrews of CTA, Inc., provided invaluable tech-

nical discussions during the software implementation of the Design

Tool. Asa Andrews developed the Graph-Entry Tool.

Available electronically at the following URL address: http://techreports.larc.nasa.gov/ltrs/ltrs.html

Printed copies available from the following:

NASA Center for AeroSpace Information

800 Elkridge Landing Road

Linthicum Heights, M D 21090-2934

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 487-4650

Contents

Nomenclature .. v

Abstract ... 1

1. Introduction ... 1

2. Dataflow Graphs and Scheduling Diagrams .. 2

3. Dataflow Graph Analysis ... 6

4. Performance Metrics and Resource Requirements .. 9

4.1. Critical Path Analysis ... 9

4.2. Calculated Speedup ... 10

4.3. Run-Time Memory Requirements .. 10

4.4. Control Edges .. 13

5. Design Tool .. 17

5.1. Design Tool Use in Graph Optimization ... 21

5.2. Case Study .. 23

5.3. Algorithm Implementation Performance ... 27

6. Tool Applications and Future Research ... 28

7. Concluding Remarks ... 29

Appendix--Implementation of ES Algori thm and LF Algorithm 30

References ... 35

Tables

Table 1. Summary of DFG Attributes for TBO = 333 clock units, TBIO = 667 clock units,
andR=3 .. 17

Table 2. Design Tool Performance Results .. 28

.°°
III

Figures

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Dataflow graph ... 2

Single graph play diagram, to = 600 clock units 3

Linked-list graph representation ... 4

Segmented single graph play diagram ... 5

Total graph play diagram. TBO = 333 clock units 6

Constructing the modified datafiow graph .. 7

The modified dataflow graph equivalent of figure 1 7

Single graph play diagram showing slack time. co = 600 clock units 9

Example function implementation ... 10

Petri net representation of dataflow graph 11

Petri model of self-loop circuit ... 13

Diagrams with E -'(C control edge ... 13

Periodic behavior with E "< C control edge 14

Periodic behavior with E -_ C and B -'(D control edges 15

Equivalent MDFG model of figure 14(b) 16

The design process .. 18

Speedup display .. 18

Metrics and SGP window displays .. 19

TGP window ... 19

Total resource envelope window ... 20

Figure 21. Graph summary window of four-processor schedule shown in figure 19 for
TBO = 300 clock units and TBIO = 600 clock units 21

Figure 22. Adding a control edge by using SGP window 22

Figure 23. Selecting the initial node of control edge 22

Figure 24. SGP window with control edge E -'(C .. 23

Figure 25. Windows with control edge E -< C ... 23

Figure 26. Windows with control edges E -'(C and B "(D 24

Figure 27. Optimized graph summary window of three-processor schedule shown

in figure 26(a) for TBO = 334 clock units and TBIO = 666 clock units 25

Figure 28. DFG2 with initial token on forward-directed edge 25

Figure 29.

Figure 30.

Figure 31.

Figure 32.

Figure 33.

Speedup potential of figure 28 DFG ... 25

Dataflow schedule of figure 28 for four processors 26

Dataflow schedule of figure 28 for seven processors 26

Graph summary of figure 28 for seven processors 27

Test graph ... 27

iv

Nomenclature

AMOS

ATAMM

Ci

CMG

Di

D (T)

DFG

DSP

d

EF

ES

F(T)

GVSC

Li

£

LF

Mo
MDFG

Ui
OE

OF

P

PI

R

S

S(T)
SGP

SGP#_s

SGPt_s

SRE

L
ro
t

T

TBI

TBIO

TBIOIb

ATAMM multicomputer operating system

algorithm to architecture mapping model

sum of node latencies in ith circuit

computational marked graph

relative data set associated with finish of task T

total number of tokens within ith circuit

relative data set associated with start of task T

dataflow graph

digital signal processing

number of initial tokens on edge or within path

earliest finish time

earliest start time

TBO-relative finish time of task T

generic VHSIC spaceborne computer

ith element in L; latency of ith task

set of task latencies

latest finish time

initial marking of graph

modified dataflow graph

ith node in DFG

output empty; number of initially empty output queue slots

output full; number of initially full output queue slots

maximum data set number

parallel-interface bus

total number of required processors

speedup

TBO-relative start time of task T

single graph play

steady-state single graph play

transient-state single graph play

single resource envelope

ith task in T

maximum time per token ratio for all graph circuits

time

set of tasks

time between inputs

time between input and output

lower bound time between input and output

TBO

TBOlb
TCE
TGP
TRE

U

VHSIC

A

-<

time between outputs

lower bound time between outputs

total computing effort

total graph play

total resource envelope

utilization

very-high-speed integrated circuit

EF - LF for a given task

schedule length

partial ordering of tasks

vi

Abstract

A graph-theoretic design process and software tool is defined for selecting a

multiprocessor scheduling solution for a class of computational problems. The prob-

lems of interest are those that can be described with a dataflow graph and are

intended to be executed repetitively on a set of identical processors. Typical applica-

tions include signal processing and control law problems. Graph-search algorithms

and analysis techniques are introduced and shown to effectively determine perfor-

mance bounds, scheduling constraints, and resource requirements. The software tool

applies the design process to a given problem and includes performance optimization

through the inclusion of additional precedence constraints among the schedulable

tasks.

1. Introduction

This paper describes methods capable of determin-

ing and evaluating the steady-state behavior of a class of

computational problems for iterative parallel execution

on multiple processors. The computational problems

must be capable of being described by a directed graph.

When the directed graph is a result of inherent data

dependencies within the problem, the directed graph is

often referred to as a "dataflow graph." Dataflow graphs,

generalized models of computation, have received

increased attention for use in modeling parallelism inher-

ent in computational problems (refs. 1 through 3). This

attention can be attributed not only to the ease at which

dataflow graphs can model parallelism but also in their

amenability to direct interpretation of program flow and

behavior (ref. 4).

In this paper, graph nodes represent schedulable

tasks and graph edges represent the data dependencies

between the tasks. Because the data dependencies imply

a precedence relationship, the tasks make up a

partial-order set; that is, some tasks must execute in a

particular order, whereas other tasks may execute inde-

pendent of other tasks. When a computational problem or

algorithm can be described with a dataflow graph, the

inherent parallelism present in the algorithm can be

readily observed and exploited. The modeling methods

presented in this paper are applicable to a class of data-

flow graphs where the time to execute tasks is assumed
constant from iteration to iteration when executed on a

set of identical processors. Also, the dataflow graph is

assumed to be data independent; that is, any decisions

present within the computational problem are contained

within the graph nodes rather than described at the graph

level. The dataflow graph provides both a graphical and

mathematical model capable of determining run-time

behavior and resource requirements at compile time. In

particular, dataflow graph analysis is shown to be able to

determine the exploitable parallelism, theoretical perfor-

mance bounds, speedup, and resource requirements of

the system. Because the graph edges imply data storage,

the resource requirement specifies the minimum amount

of memory needed for data buffers as well as the proces-

sor requirements. Obtaining this information is useful in

allowing a user to match the resource requirements with

resource availability. In addition, the nonpreemptive

scheduling and synchronization of the tasks that are suf-

ficient to obtain the theoretic performance are specified

by the datafiow graph. This property allows the user to

direct the run-time execution according to the dataflow

firing rules (i.e., when tasks are enabled for execution) so

that the run-time effort is reduced to simply allocating an

idle processor to an enabled task (refs. 5 and 6). When

resource availability is not sufficient to achieve optimum

performance, a technique of optimizing the dataflow

graph with artificial data dependencies, called control

edges, is discussed.

Predicting the computing performance, resource

requirements, and processor utilization connected with
the execution of a dataflow graph requires the determina-

tion of steady-state behavior. Dataflow graph analysis

algorithms and rules are defined in this paper for deter-

mining the scheduling constraints, that is, earliest execu-
tion times and mobility, for all tasks under steady-state
conditions. It is also shown that certain initial conditions

represented by initial data in a dataflow graph may result
in a transient-state execution different from the

steady-state execution. The analysis algorithms are
shown to detect such transient conditions. The method

for determining periodic steady-state behavior is based

on first describing the execution of data associated with a

single computational iteration, referred to as a "data set."
Second, the transient state is distinguished from the

steady state if necessary when initial data are present.

Finally, the periodic execution for multiple iterations is
determined from the steady-state single iteration

description.

For the mathematical models presented, an efficient

software tool which applies the models is desirable for

solving problems in a timely manner. A software tool

developed for design and analysis is presented. The soft-

ware program, referred hereafter as the "Design Tool,"

providesautomaticandinteractiveanalysiscapabilities

applicable to the design of a multiprocessing solution.

The development of the Design Tool was motivated by a

need to adapt multiprocessing computations to emerging

very-high-speed integrated circuit (VHSIC) space-

qualified hardware for aerospace applications. In addi-

tion to the Design Tool, a multiprocessing operating sys-

tem based on a directed-graph approach called the

ATAMM multicomputer operating system (AMOS) was

developed. AMOS executes the rules of the algorithm to

architecture mapping model (ATAMM) and has been

successfully demonstrated on a generic VHSIC space-

borne computer (GVSC) consisting of four processors

loosely coupled on a parallel-interface (PI) bus (refs. 5

and 6). The Design Tool was developed not only for the

AMOS/GVSC application-development environment

presented in references 5 and 7 but for other potential

dataflow applications. For example, the design proce-

dures based on ATAMM solve signal processing prob-

lems addressed by Parhi and Messerschmitt in

reference 3. (See ref. 8.) Information provided by the

Design Tool could also be used as scheduling constraints

as done in reference 9 to aid other scheduling algorithms.

The modeling of a computational problem with a

dataflow graph and analysis diagrams is discussed in

section 2. A forward-search algorithm is defined and is
shown to determine the earliest execution times for all

tasks. Section 3 discusses a modification to the dataflow

graph described in section 2, which lends itself to
the modeling of initial conditions. In addition, a

backward-search algorithm is defined and shown to

determine the mobility of the tasks and transient condi-

tions which affect the steady-state behavior. The perfor-

mance metrics and resource requirements procedures
implemented in the Design Tool are described in

section 4. The memory requirements of data shared
among tasks, as described by a directed graph, is shown

to be bounded. Rules for determining the minimum

memory requirements for buffering-shared data are

defined. The Design Tool displays and features are pre-

sented in section 5 where the performance results are

compared with the theoretical results derived in the pre-

vious sections. Section 5 also presents execution time

results regarding the Design Tool implementation of the

algorithms presented in sections 2 and 3. Applications
and future research are summarized in section 6.

2. Dataflow Graphs and Scheduling Diagrams

A generalized description of a multiprocessing prob-

lem and how it can be modeled by a directed graph is

presented in this section. Such formalism is useful in

defining the graph analysis algorithms and rules which

determine scheduling constaints. A computational prob-

lem (job) can often be decomposed into a set of tasks to

Latency _ Node

Edge __

 00LU 100
_.__-Token

Figure 1. Dataflow graph.

be scheduled for execution (ref. 10). If the set of tasks are

not independent of one another, a precedence relation-

ship is imposed on the tasks in order to obtain correct

computational results. A task system can be represented
formally as a 4-tuple (Z _ , L, Mo) where

'/" set of n tasks to be executed, {T1, T2, T3..... Tn }

-(precedence relationship on q'such that T i "(7_

signifies that 7_ cannot execute until completion
of L.

L nonempty, strictly positive set of run-time laten-

cies such that task T i takes L i amount of time to
execute, {LI, L2, L 3..... Ln}

Mo initial state of system, as indicated by presence
of initial data

Such task systems can be described by a directed

graph where nodes (vertices) represent the tasks and

edges (arcs) describe the precedence relationship

between the tasks. When the precedence constraints
given by "< are a result of the datafiow between the

tasks, the directed graph is referred to as a "dataflow

graph (DFG)" as shown in figure 1. Special transitions
called sources and sinks are also provided to model the

input and output data streams of the task system. The

presence of data is indicated within the DFG by the

placement of tokens. The DFG is initially in the state

indicated by the marking Mo. The graph moves through

other markings as a result of a sequence of node firings
(executions); that is, when a token is available on every

input edge of a node and sufficient resources are avail-

able for the execution of the task represented by the
node, the node fires. When the node associated with task

T/ fires, it consumes one token from each of its input

edges, delays an amount of time equal to L i, and then

deposits one token on each of its output edges. Sources

and sinks have special firing rules; sources are uncondi-

tionally enabled for firing, and sinks consume tokens but

donotproduceany.ByanalyzingtheDFGin termsof its
criticalpath,criticalcircuit,dataflowschedule,andthe
tokenboundswithinthegraph,theperformancecharac-
teristicsandresourcerequirementscanbedetermined
apriori.TheDesignTooldependsonthisdataflowrepre-
sentationof a tasksystem,andthegraph-theoreticper-
formancemetricspresentedherein.

Thegraphexecutionforasingleiteration,unlimited
resourcesassumed,canbeportrayedwitha Ganttchart
wherehorizontalbarsareusedto indicatewhentasks
maybescheduledforexecution.Suchachartis referred
to hereafterasa "singlegraphplay(SGP)diagram,"
whichisshownin figure2 fortheDFGof figure1.The
SGPcanbeconstructedbycalculatingtheearlieststart
(ES)timesforall tasks.TheEStimescanbecalculated
byenvisioningthemigrationof asingledatasetthrough
thegraph.Sincetheconditionfora nodeto fire(begin
execution)ishavingatokenpresentonall itsinputs,the
EStimefor a giventaskis equalto the longestpath
latency(startingfromthesource)forallpathsleadingto
itsinputs.Thelongestinputpathlatencywouldindicate
thetimeat whichall inputtokenswouldbepresentfor
execution.Theamountoftimerequiredforallnodesofa
graphto executea singledatasetor graphiterationis
referredtoastheschedulelength,denotedasco.Forgen-
erality,thetasklatenciesshownin figure1aregivenin
clock units, andthereforetheschedulelengthis
showninfigure2tobeequalto600clockunits.

F

E

D

C

B

A
I I I I I

100 200 300 400 500 600

Time, clock units

Figure 2. Single graph play diagram, co= 600 clock units.

The two algorithms, defined in this paper, that

implement a forward and backward search of the directed

graph and other analyses are based on a linked-list repre-

sentation of the graph. In this way, pointers can be used

for efficient progression through the graph from any

given starting point. An example illustrating the connec-

tions between node objects and edge objects is shown in

figure 3. The object address pointers are denoted by

asterisks. A node object points to just one input and

one output. All other input and outputs are connected

to the node by the next input and next output

pointers. A nul 1 pointer indicates that no other input or

output exists.

Given a linked-list graph representation as shown in

figure 3, the following forward-search algorithm deter-
mines the earliest start times for all nodes (tasks). The

algorithm employs the depth-first searching method

where the graph is penetrated as deeply as possible from

a given source before fanning out to other nodes. For
each node encountered in the search, the algorithm calls

the procedure SearchFwd recursively for each output

edge associated with the node. The recursive nature of

the algorithm allows a depth-first search of the graph to

be done while implicitly retaining the next edge (starting

point for the next path to U'averse when fanning out) and

accumulated path latency on the memory stack. The

arguments passed into SearchFwd are an address

pointer (edge) to an edge structure (fig. 3) and the cur-
rent path latency (path_latency) up to the edge.

Also, let node specify a pointer to a node structure. An

edge will point to a next output if present, and will

be null if no other output edges for the current node

exist. The ES Algorithm is stated as follows:

A. Initialize earliest start times for all nodes to

zero

B. Execute procedure SearchFwd (source.

output, 0) for every source in graph by start-

ing with first output edge of source; path

latency, the second parameter, initially set to
zero

SearchFwd (edge, path_latency)

I. If edge.next_output is not null,

call SearchFwd (edge.next_out-

put, path_lat ency).

2. Get the node that uses this edge for

input by setting node equal to
edge. terminal_node.

3. Determine the earliest start of node,

ES (node), such that ES (node) = max

[ES (node), path_latency].

4. Increasepath_latency by the node

latency, Lnode.

5. Set edge equal to the first output edge of

node, edge = node. output.

6. If a sink has been reached (edge : null),

return from this procedure; else repeat

Step 1.

(a) Example graph.

Source I

Input*

Output*

Node A

Input*
Output*

Node B

Input*
Output*

Edge A-C

II
Terminal* _ Node C

N_* I tq
Next_-Output,l] Input*Output*

Noxt_OutpotN **[
Node D

Input*
Output*

Edge C-D I

Initial* |

Terminal* l-
Next Input* I------q

Next--Output*_]_. _J_

(b) Linked-list representation.

Figure 3. Linked-list storage of dataflow graph.

i Edge D-O 1

Terminal* |

Next Input*

ext--Out_pu___ 1

Sink O I

Input* I

Output* __

The ES Algori thinexecution time is graph depen-

dent and is bounded by

Bound = E Ni (1)

Over all paths in DFG

where N i is the number of nodes in a given path. Because
the number of paths in a given graph with at most

N nodes is bounded by N 2, the expression (eq. (1)) has a
worst-case bound of N*'_.Therefore, the ES Algorithm

has a complexity of the order of N 3, or
O(N3).p°Iy n°mial-time

The elapsed time between the production of an input

token by the source and the consumption of the corre-

sponding output token by the sink is defined as the time

between input and output (TBIO). When initial tokens

are not present, m will be equal to TBIO, otherwise m

may be greater than TBIO. As discussed later, the SGP

determined by the ES analysis given by the ES Algo-
rithm when initial tokens in the forward dataflow

direction are present may not be representative of the

steady-state behavior, SGPs_ s, at run time but instead por-

trays a transient state, SGPt_ s. Refinements to the com-

puted earliest start times may be required to obtain the

SGPs_ s. A method for determining these refinements is
included in the next section.

Of particular interest are the cases when the algo-
rithm modeled by the DFG is executed repetitively for

different data sets. The iteration period and, thus,

throughput is characterized by the metric TBO (time

between outputs) where TBO is defined as the time
between consecutive consumptions of output tokens by a

sink. It can be shown that because of the consistency

property of dataflow graphs, all tasks execute with period
TBO (refs. 11 and 12). This implies that if input data are

injected into the graph with period TBI (time between

inputs) then output data will be generated at the graph

sink with period TBO equal to TBI.

The periodic graph execution for multiple iterations

can be portrayed in another Gantt chart referred to as a

"total graph play (TGP) diagram." The TGP diagram

shows the execution over a single iteration period of

TBO. Like the single graph play diagram, the total graph

play diagram represents task executions with horizontal
bars. The TGP can be constructed from the SGP by

dividing the SGP into segments of width TBO starting

from the left of the diagram. The resulting SGP from the

previous example for an arbitrarily selected TBO period

of 333 clock units is shown in figure 4. Each segment is

representative of the execution associated with a particu-

lar data set when the graph is executed periodically.

D

C

B

A

1

-qE TBO = 333 clock units

100

1 1]
200 300 400 500

Time, clock units

Figure 4. Segmented single graph play diagram.

1]
600 700

5

Consequently,thesesegmentsareassignedrelativedata
setnumbers,1toP, from right to left. Overlapping these

segments portrays the graph execution for multiple data

sets within a TBO period as shown in figure 5. Note that

the relative data set numbers assigned to the task bars

within the TGP of figure 5 correspond to the numbered

SGP segments of figure 4. The fact that within a TBO

period, every task will execute exactly once is obvious

from the nature of how the TGP is constructed by over-

lapping TBO-width segments from the SGP. The total

computing effort (TCE) within a TBO interval from SGP

segments would therefore equal the sum of all task laten-

cies within the latency set L.

F_ I I I

E 1

D

C

1

2

By numbering the SGP segments 1 to Pfrom right to left,
a relative data set numbered D will refer to a data set

injected into the graph 1 TBO interval after a data set

numbered D- 1. Overlapped bars for a given task indi-

cate that the task has multiple instantiations as for task B.

That is, the task is executed on different processors

simultaneously for different data sets. Allowing multiple

task instantiations is a key mechanism for increasing
speedup.

The inherent nature of dataflow graphs is to accept
data as quickly as the graph and available resources (pro-

cessors and memory) allow. When this occurs, the graph

becomes congested with tokens waiting on edges for pro-
cessing because of the finite resources available, without

resulting in an increase in throughput above the

graph-imposed upper bound (refs. 2 and 13). When

tokens wait on the critical path for execution, however,
an increase in TBIO above the lower bound occurs. This

increase in TBIO can be undesirable for many real-time

applications. It is therefore necessary to constrain the

parallelism that can be exploited in order to prevent

resource saturation. Constraining the parallelism in data-

flow graphs can be controlled by limiting the input injec-

tion rate to the graph. Adding a delay loop around the

source makes the source no longer unconditionally

enabled (ref. 5). It is important to determine the appropri-

ate lower bound on TBO for a given graph and number
of resources. Determination of the lower bound on TBO

is deferred to section 4.

A

t t+TBO

Figure 5. Total graph play diagram. TBO = 333 clock units.

Constructing the TGP by overlapping SGP segments

is equivalent to mapping the ES times (relative to the

SGP) to a time interval of width TBO by using the map-

ping function ES modulo TBO. The number of SGP seg-
ments is equal to the maximum number of data sets

simultaneously present in the graph at steady state and

indicates the level of pipeline concurrency that is bein_
exploited. This metric is given by applying the ceiling'

function to the ratio of the schedule length co to TBO as

shown in the following equation:

IThe ceiling of a real number x, denoted as I-x], is equal to the

smallest integer greater than x.

3. Dataflow Graph Analysis

In the absence of initial tokens within the graph, a
latest finish (LF) time analysis would be similar to the

depth-first searching method used to calculate the earliest

start times, only in the reverse direction. That is, search-

ing backward from all sinks, the latest time each task

associated with an encountered node must complete in

order to prevent an increase in the TBIO given by the ES

time analysis can be determined. The latest finish time

for a given task is equal to TBIO (for a given sink) less

the maximum path latency to the associated node output

from all possible paths leading backwards from the sink.
The combination of earliest start and latest finish times

provide the means to calculate the float or slack time that

might be present for each task. Slack time indicates the

maximum delay in task completion that can be tolerated
without delaying the start times of successor tasks which
result in an increase in TBIO. Slack time for a task is

given by

Slack time = LF (T/) - ES (Ti) -L i (3)

with latency L.

When initial tokens are present within the graph, the

ES and LF analysis presented here must be modified

slightly. The method for determining the steady-state

behavior of a dataflow graph when initial tokens are

present is based on a simple extension to the earliest start

time analysis described in the previous section and a lat-

est finish time analysis to be discussed here. It will be

shown in later examples that initial tokens within the

DFG not only affect the calculations of ES and LF times

but may also be associated with recurrence loops (result-

ing in graph circuits), which tend to complicate the graph

search process. Modifications to the dataflow graph,

which simplify the analysis, are defined here and can be

shown to result in an equivalent model of the original

graph. This modified dataflow graph is referred hereafter
as the MDFG.

The MDFG can be constructed by letting all edges

with one or more initial tokens undergo the transforma-

tion shown in figure 6 where such edges are terminated
with "virtual" sinks. Each virtual sink is labeled with the

identifier of the node that consumes tokens from the orig-

inal edge. In the cases where all input edges of a node
have initial tokens, a virtual source for each such node is

added so that the node is not left dangling without an

input edge. The addition of these virtual sources main-

tains compatibility with the ES Algorithm. The result-

ing MDFG of the dataflow graph in figure 1 is shown in

figure 7.

The MDFG can now model the more complex prob-

lem containing initial tokens but in a simpler, linear

(source to sink) fashion. Now, the same ES analysis from
all sources to sinks can be conducted as before. However,

in order to ensure that the new MDFG is equivalent to

the original dataflow graph, an additional time constraint

must be imposed on the graph at these virtual sinks.

Referring to figure 6, the time constraint is defined as
follows:

LF(Ti) = ES (Tt) +d(TBO) (4)

where LF(T/) representsthe LF time of Tidue to theini-

tialtokens, ES(T t) represents the ES time of Tt, and d is
the number of initial tokens on the T i "< T t edge. Stated

in words, equation (4) determines the latest finish time of

task T i which returns a token on the edge initialized with
d tokens such that the firing of task Tt will not be

delayed. The ES(T t) is determined by the E5 g3_go-
rith_m starting from all MDFG sources. If equation (4)
results in a LF time less than the earliest finish (EF) time

of T i, a time constraint has been violated. Since a task

cannot complete execution sooner than its earliest finish

time (as determined from the ES analysis), a transient
condition has been detected. For the first iteration, the

graph will execute according to the SGPt_ s as defined by

Virtual

Virtual
source

Figure 6. Constructing the modified dataflow graph.

400

 ink
Figure 7. The modified dataflow graph equivalent of figure 1.

the ES Algorithm. However, since the next data set
will arrive 1 TBO interval later, an additional time con-

straint will be imposed if initial tokens exist in the graph.

The node T t with d initial input tokens has the potential

(depending on other input dependencies) of repeated fir-

ings until all d tokens are consumed. With each node fir-

ing with period TBO, the elapsed time to consume

d tokens is the product of d and TBO. The predecessor

node T i must return a token within d(TBO) time relative

to the ES so that the next firing of Tt is not delayed.

Therefore, in order for node Ti to generate its first token

in this timely manner which maintains the task schedule

defined by the first iteration SGPt_ s, it must do so by the
time determined by equation (4). Otherwise, the firing of

node T t will be delayed, resulting in SGPs_ s _: SGPt_ s .

Now that it has been shown that timing conflicts

determined by equation (4) indicate the presence of a

transient state, SGPt_ s _ SGPs_ s , a method is needed to

translate the SGPt_ s to the SGPs_ s. By adjusting the ear-
liest start times of the nodes affected by this delay, the

steady-state behavior when initial tokens are present can
be determined. When equation (4) indicates a timing

conflict,determinethetimedifferencebetweentheresult
of equation(4),LF(Ti),andtheearliestfinishof theTi,

EF(Ti) = ES(Ti) + Li, and denote this difference by A,

A = EF(Ti)-LF(Ti) (5)

The method to translate the SGPt_ s to the SGPs_ s sim-
ply involves adding A to the ES time of T r An ES time
analysis is then conducted again on the graph nodes con-

tained in the paths dependent on Tr After completing this
ES time adjustment, an LF time analysis is required as

before for all paths backward from the sinks. This pro-

cess is repeated until no time conflicts are detected by

equation (5); that is, A < 0. The following algorithm

determines both the LF times and the transient adjust-
ments to the ES times and accounts for initial token tran-

sients as described above.

Given the linked-list graph representation shown in

figure 3, a depth-first search algorithm that employs the

same method used by the ES Algorithm (only in the
reverse direction) will determine the latest finish times

for all nodes (tasks). The algorithm calls the procedure

SearchBkwd recursively for each input edge. As with
the ES Algorithm, the recursive nature of this

backward-search algorithm results in a depth-first search

of a graph from sinks to sources while implicitly retain-

ing the next edge (starting point for the next path to

traverse when fanning out) and accumulated path latency
on the memory stack. The arguments passed in to

SearchBkwd are an address pointer (edge) to an edge

object in figure3 and a latency value (path_

latency). This latency value is defined as the TBIO at

the starting sink less the sum of node latencies along the

current path from the sink up to an encountered node. As

in the SearchFwd procedure, let node specify a

pointer to a node structure of figure 3. An edge will

point to a next_input if present, and will be null if no

other input edges for the current node exist. The itera-

tive nature of the LF Algorithm for the cases where

initial tokens are present within the DFG requires the
inclusion of a boolean condition. The boolean condition

Done in the LF Algorithm indicates when the process

of determining LF times for all nodes is complete. The
LF Algorithm is stated as follows:

A. Initialize all LF times of tasks in '/'to maxi-

mum storage value and set Done = False.

B. While not Done Loop through to Step K.

C. Set Done to True and repeat Step D for every

sink in the graph.

D. If the sink is not virtual, set LF equal to the
earliest start of the sink (already established

by the ES Algorithm) and skip to Step J;

else determine the terminal node, Tt, of the

E.

E

G.

H.

edge with the initial token and set LF equal to

ES(Tt) + d(TBO) where ES(Tt) is the earliest

start of Tt, d is the number of initial tokens,

and TBO is the iteration period.

Set A equal to earliest finish of Ti minus LF.

If A is less than or equal to zero go to Step J;
else set Done to False.

Increase the earliest start of T t by A.

Call the procedure SearchFwd (Troutput,

ES(Tt) + Lt) of the ES Algorithm in order

to propagate the A time shift for all descen-

dent nodes of Tr

I. Increase LF by A.

J. Call the procedure

input, LF).

K. Loop untilDone.

SearchBkwd (sink.

SearchBkwd(edge, path latency)

1. If edge.next_input is not null, call

SearchBkwd (edge.next input,

path_lat ency).

2. Get the node that uses this edge for

output by setting node equal to
edge.initial_node.

3. Determine the latest finish of node, LF

(node), such that LF (node)= min

[LF (node), path_latency].

4. Decrease path_latency by the

node latency, Lnode.

5. Set edge equal to the first input edge of
node, edge = node.input.

6. If a source has been reached (edge =

null), return from this procedure;

else repeat Step 1.

Since the method just presented to translate the

SGP. to the SGP is recurrent, one may question if a_-s . s-s
solution exists for all cases. This is important since, if a

solution does not exist, the method would hang in an infi-

nite loop. The answer is yes, there is a solution. The

proof lies in the fact that the only potential problem
results when circuits with initial tokens are present in the

dataflow graph. If adjustments were made to the ES

times of the nodes dependent on the edge initialized with

tokens that eventually led back to the original edge (due

to a circuit) with a new EF time, the new EF time would

again cause a conflict in equation (4), and the process

would repeat indefinitely--a run-away condition. Such a

condition implies that nodes firing on tokens propagating

throughsucha circuitcouldnotproduceatokenonthe
initializededgein a timelymanner.It hasbeenshown
thattheminimumgraph-theoreticiterationperiod,TO, is

given by the ratio of the ith circuit latency, Ci, to the

number of tokens in the circuit, D i for all circuits within

the DFG (refs. 3, 9, 11, and 14):

(for all ith circuits) (6)

Equation (6) determines the minimum time in which

tokens can propagate through a circuit in one periodic

cycle and thus establishes a lower bound on TBO. The

only way this algorithm would fail to complete is if the

TBO of equation (4) is less than its lower bound TO given

by equation (6). Since TBO cannot be less than To, such

a timing conflict cannot occur and thus the ES/LF algo-

rithms previously presented will always have a solution.

As an alternative approach, the steady-state ES times

could be determined during the forward search of the

graph by applying equation (4) (solving for ES(Tt) with

LF(Ti) set equal to the path latency) whenever encounter-

ing forward-path initial tokens. After determining all

steady-state ES times, the LF times could then be calcu-

lated without requiring any further adjustments to the ES

times, resulting in a one-time pass of the graph in the for-

ward and backward direction. The algorithms are pre-

sented in the potentially recurrent form for the purpose of

efficiently handling the frequent cases. That is, applica-

tion of equation(4) (solved for ES(Tt)) would be

required each time an edge with initial tokens was

encountered by traversing multiple paths that may con-

verge on the edge. Use of equation (4) once when begin-

ning with a virtual sink would tend to minimize its use.

Also, it is felt that the frequent cases involve uninitial-

ized edges or initialization of recurrence loops (no
forward-path tokens). Thus, this only requires the

one-time use of equation (4) by the LF Algori thin for

the purpose of calculating slack time within the recur-

rence loop. Like the ES Algorithm, the time complex-

ity of the LF Algorithm is bounded by equation (1).

Thus, the LF Algorithm can also be executed in poly-
nomial time with a worst-case bound of O(N3).

Applying the LF Algorithm to the DFG of

figure 1 for a TBO of 333 clock units is shown in

figure 8. As expected, the slack time of task C extends all

the way to the start time of task F. This would also be the
case for task E if it were not for the initial token on the

E "< D edge. Because of this token, the slack time of

task E extends out only 33.3 clock units for the current

iteration period of 333 clock units. The fact that this
slack is associated with the next iteration of task D is

apparent from the TGP diagram of figure 5 where the

F

E

D

C

B

A

[..........................t Slack time [

I I I I I
100 200 300 400 500 600

Time, clock units

Figure 8. Single graph play diagram showing slack time. 0_=
600 clock units.

time between the completion of task E and the start of

task D is equal to 33.3 clock units.

4. Performance Metrics and Resource

Requirements

The two types of concurrency that can be exploited

in datafiow algorithms can be classified as parallel and

pipeline. The TBO and TBIO performance metrics

defined in the previous sections are important in evaluat-

ing the efficiency of the algorithm execution, that is, how

well the inherent parallelism within the algorithm is

being exploited. Therefore, it is important to determine
the bounds on these metrics which define the optimum

scheduling solution.

4.1. Critical Path Analysis

Parallel concurrency is associated with the execution

of tasks that are independent (no precedence relationship

imposed by -_). The extent to which parallel concur-

rency can be exploited is dependent on the number of

parallel paths within the DFG and the number of

resources available to exploit the parallelism. The TBIO
metric in relation to the time it would take to execute all

tasks sequentially can be a good measure of the parallel

concurrency inherent within a DFG. If there are no initial

tokens present in the DFG, TBIO can be determined with

the traditional critical path analysis, where TBIO is given
as the sum of latencies in L along the critical path. When

Mo defines initial tokens in the forward direction, the

graph takes on a different behavior as represented by the

new paths within the MDFG. Cases such as this include

many signal processing and control algorithms where ini-

tial tokens are expected to provide previous state infor-

mation (history) or to provide delays within the

algorithm. For the example shown in figure 9, the task

output z(n) associated with the nth iteration is dependent

z(n) = x(n) * y(n-dl) * w(n-d2)

x(n) _ z(n)

w(n-d2)__

dE

Figure 9. Example function implementation.

on the current input x(n), input y (n - dl) provided by

the (n - dl)th iteration, and input w (n - d2) produced

by the (n - d2)th iteration.

Implementation of this function would require d I ini-

tial tokens on the y(n-dl) edge and d2 initial tokens
on the w (n-d2) edge in order to create the desired

delays. In such cases, the critical path and thus TBIO are

also dependent on the iteration period TBO. For exam-

ple, given that a node fires when all input tokens are

available, assuming sufficient resources, the earliest time

at which the node shown in figure 9 could fire would be

dependent on the longest path latency leading to either

the x (n) or y (n -dl) edge. Assuming that the d 1 and

d2 tokens are the only initial tokens within the graph, the
time it would take a token associated with the nth itera-

tion to reach the x (n) edge would equal the path latency

leading to the x (n) edge. Likewise, the minimum time

at which the "token" firing the nth iteration on the

y (n- dl) edge could arrive from the source equals the

path latency leading to the y (n -dl) edge. However,

since this "token" is associated with the (n -d i)th itera-

tion (produced d 1 (TBO) intervals earlier), the actual

path latency referenced to the same iteration is reduced

by the product of d 1 and TBO. From this example, it is

easy to infer that the actual path latency along any path

with a collection of d initial tokens is equal to the sum-

mation of the associated node latencies less the product

of d and TBO. Thus, the critical path (and TBIO) is a
function of TBO and is given as the path from source to

sink that maximizes the following equation for TBIO:

TBIO = max I(i_Li) - d (TBO) l (forallpaths)(7)

where d is the total number of initial tokens along the

path. It is easy to see that the critical path for the DFG in
figurel is A_ B'< F, resulting in a TBIO of
600 clock units.

10

4.2. Calculated Speedup

Pipeline concurrency is associated with the repetitive

execution of the algorithm for successive iterations with-

out waiting for earlier iterations to complete.

Equation (6) defines the lower bound iteration period TO

due to the characteristics of the graph alone. That is, if

circuits are present in the DFG, To is given by

equation (6), otherwise To is zero. Given a finite number

of processors, however, the actual lower bound on itera-

tion period (or TBOlb) is given by

TBOtb= max(T, I-T_--E 7) (8)

where TCE (total computing effort) is the sum of laten-
cies in L,

TCE = ELi (9)
ieL

and R is the number of available processors. The theoret-

ically optimum value of R for a given TBO period,

referred to as the calculated R, is given as

R : [TCE7 (10)
ITBOI

Since every task executes once within an iteration period

of TBO with R processors and takes TCE amount of time

with one processor, speedup S using Amdahl's Law can
be defined as

TCE
S - (ll)

TBO

and processor utilization U ranging from 0 to 1 can be
defined as

S
U = - (12)

R

4.3. Run-Time Memory Requirements

The scheduling techniques offered by this paper are

intended to apply to the periodic execution of algorithms.

In many instances, the algorithms may execute indefi-

nitely on an unlimited stream of input data, for example,

digital signal processing algorithms. Even though the

multiprocessor schedules determined by the ES Algo-

rithm and LF Algorithm are periodic, it is important

to determine if the memory requirements for the data are

bounded. Just knowing that the memory requirements are

bounded may not be enough. One may also wish to cal-

culate the maximum memory requirements a priori. By

knowing the upper bound on memory, the memory can

be allocated statically at compile time to avoid the

run-time overhead of dynamic memory management.

Sincethedataflowgraphedgesimplyphysicalstorageof
thedatasharedamongtasks,graph-theoreticrulesare
definedin thissectioncapableof determiningthebound
onmemoryrequiredfortheshareddata.

Topresentaslightlymoredetailedmodelofparallel
computationof tasksrepresentedbyaDFGishelpfulfor
thefollowingdiscussion.ThePetrinetmodelshownin
figure10describestheactivitiesassociatedwiththeexe-
cutionof ordereddataflowtasks,Ti "_ 7). A Petri net
such as the one shown in figure 10 is a special class of

Petri nets called a marked graph (ref. 15). This model is

equivalent to the ATAMM computational marked graph
(CMG) shown in references 13, 14, and 16. As shown in

figure 10, the edges directed from left to right represent
dataflow while the edges from right to left represent con-

trol flow. Of particular interest, the edges associated with

the output empty (OE) place can be regarded as an

"acknowledgment edge." That is, given the data depen-

dency T i "_ 7_, the acknowledgment edge provides a

signal to node Ti indicating that node Tj has consumed a
token from the output full (OF) place. The number of

tokens present at any one time in the OE place represents

the total number of empty data buffers available for out-

put data tokens. The number of buffers currently occu-

pied with data tokens is represented by the number of

tokens in the OF place. Pairing every data edge with an

acknowledgment edge assures that a buffer will be avail-

able for the output data before a task begins execution. A
modeled task is enabled for execution when all necessary

input tokens to the Fire transition are available. After

firing, the node will produce a token in the busy place,

enabling the Data transition. The Data transition for

node T i of q"will generate a token at the output places
after delaying an amount of time equal to L i of L. The

idle place between the Data and Fire transitions is

included to convey information about task instantiations

at run time. The graph shown in figure 10(b) has been

shown to be consistent (refs. 11 and 15). This implies

that given an initial marking, the total number of tokens
within a circuit remains unchanged for all valid markings

reached by firing transitions. Therefore, the initial num-
ber of tokens located in the idle place will ultimately

migrate to the busy place; this indicates the number of
task instantiations at run time. Based on equation (6), the

number of tokens that must be present in a circuit for a

given iteration period, TBO, is given by the following

equation

I Ci 1 (for all i circuits) (13)D/= /

(a) DFG model of T i "< 7).

OE

rj
IF _ Firebusy Data OF _ /

(b) Petri net model.

Figure 10. Petri net representation of dataflow graph.

11

andthusthecircuitformedbytheidle placebetween
theData andFire transitionimpliesthattherequired
numberofinstantiationsof taskT i that was derived from

the TGP diagram is determined by the following

equation:

ILil (14)Instantiations of Ti =

Because DFG tokens carry data values (or pointers
to where the data are located when the tokens become

heavy), the DFG edges which transport tokens from one

node to the next, imply physical memory space. Again

relying on the token conservation property, the summa-
tion of the initial OF tokens due to initial data and the ini-

tial number of OE tokens needed to satisfy equation (13)

determines the maximum buffer space required for the

data associated with the DFG edge at run time--ideally,

ignoring fault tolerant issues. The initial tokens required

in the OE and OF places can also be determined from the

TGP diagram, but in a less obvious way.

Initial OE tokens can be determined by examining

the relative firing times of the predecessor and successor

tasks along with the corresponding data set displace-
ments. The OE Rule can be used to determine the initial

number of OE tokens indicating the data buffers that are
initially empty and is as follows:

Let S (Ti) represent the start time of task T i rel-
ative to a TBO interval as portrayed in the TGP

diagram, and let D s (Ti) represent the relative
data set number associated with the start time of

task Ti. The start time S (Ti) can be calculated

directly from the ES of Ti with the equation

S(T.) = ES(Ti)moduloTBO (15)

The relative data set number can also be deter-

mined from the TGP diagram or calculated

directly by the equation

ESTB__.O(Ti) 1 (16)os(L) =

where the floor function is applied to the ratio of

ES(Ti) and TBO, and Pis given by equation (2).

Then, given a task Tp, let T s represent the suc-

cessor task which uses the output data of Tp as
input and OE_ s be the initial OE tokens required

for the precedence relation Tp "_ Ts.

If O s (Tp) - O s (Ts) >_0

Then If S (Tp) <_S (Ts)

Then OEps = D s (Tp) - D s (Ts) + 1

Else OEps = D s (Tp) -D s (Ts)

Else OEps = 0

In terms of the graph nodes, a negative

D s (Tp) - D s (Ts) indicates that the successor node has
fired more often than the predecessor node it is depen-

dent on. The only way this could be possible is if there

were initial tokens present in the OF place. A positive

difference D s (Tp) - D s (Ts) represents the number of
times the predecessor node fires before the successor
node fires once. This difference would therefore be the

initial tokens required in the OE place. If

S(Tp) >S(Ts) then the successor node would have
returned the one token required in the OE place for the

predecessor to fire again, and thus no additional tokens

are needed. However, the condition S (Tp) < S (Ts) indi-
cates that the predecessor node must fire before or at the
same time the successor node fires and returns the OE

token. Therefore, the S(Tp) < S(Ts) condition requires
that one extra token be included initially in the OE place.

For example, the OE Rule utilizing the TGP of

figure 5 for the C -(F specifies that OEcF = 2 or in

other words, two empty data buffers are initially

required. Since the data edge did not have any initial
tokens (no initially full buffers), two buffer spaces would

be required at run time.

There is one item that must be mentioned concerning

the OE Rule. For all practical purposes the < in the

S (Tp) < S (Ts) expression can be replaced with a <.
This change has the effect of delaying the firing of the

predecessor node by one Fire transition time when Tp
and Ts would otherwise start simultaneously. If the Fi re

transition time which may represent the reading of input

data is considered negligible in the case of large-grained
algorithms, being conservative with tokens (and thus

buffer space) is easily tolerated. The rule represents the

more conservative case in order to satisfy the general
problem. One special case is shown in figure 11 as a

node with a self-recurrence circuit (representing the fact

that the task represented by the node has history). The OE

Rule would indicate that one initially empty buffer is

needed in addition to the initial data occupying a second

buffer. Use of the conservative token approach would not
make sense in this case because a node that is

self-dependent cannot wait on itself to fire.

The OE Rule determines the number of data buffers

needed in addition to the buffers required for initial data

for all edges within the DFG. Therefore, the resource

requirements in terms of total buffer space for a given

data edge is equal to the OE tokens given by the OE

Rule plus the number of initial tokens present on the

edge. Calculating resource requirements in terms of pro-

cessors is more straightforward. The minimum processor

requirement R for a given TBO at steady-state can be

derived simply by counting the maximum overlap of bars

within the corresponding TGP. However, the R

12

(a)Self-loopnode.

OE

_ buT_y Data

initial data

(b) Petri net model.

(a) DFG diagram.

F

E

D

C

B

A
I I I I I

100 200 300 400 500 600

Time, clock units

Figure 11. Petri model of self-loop circuit. (b) SGP diagram, to = 600 clock units.

determined may not be optimum for a given _(. For

example, given only three processors, TBOlb for the

DFG of figure 1 by equation (8) is equal to 333, which

by equations (11) and (12) would indicate that three pro-
cessors would provide maximum linear speedup with

100 percent processor utilization. Even though the pro-

cessor requirements for a single graph iteration is three

(determined by counting the maximum overlap of bars in

fig. 8), the processor requirements for repetitive execu-

tion with a period of 333 requires four processors as can

be derived from figure 5. This is because of the fact that

the precedence constraints imposed by -(makes finding

this optimal solution NP-complete and the design process

presented in this paper only provides the determination

of a sufficient number of processors in order to guarantee

a schedule meeting TBO and TBIO requirements

(refs. 9 and 10). In fact, one cannot guarantee that a

multiprocessor-scheduling solution even exists when all

three parameters (TBO, TBIO, and R) are fixed (ref. 9).

Accordingly, it is necessary to find another schedule, if

one exists, that would provide the desired computational

speedup performance; a method for doing so is discussed
in the next section.

Figure 12. Diagrams with E "(C conlrol edge.

4.4. Control Edges

Imposing additional precedence constraints or artifi-

cial data dependencies onto '/" (thereby changing the

schedule) is a viable way to improve performance (refs. 5
and 17). These artificial data dependencies are referred to

as "control edges." As an illustration, observe that there

is needless parallelism being exploited for the single

graph execution shown in figure 8; that is, three proces-
sors are not necessary to exploit all of the parallel

concurrency--two would suffice. This presents an

opportunity to take advantage of the slack time present in
the graph to reduce the processor requirement without

affecting the critical path.

Since task C does not need to complete execution

until 500 clock units as shown in figure 8, a control edge

can be included in order to create the precedence rela-

tionship E "(C effectively delaying task C until the

completion of task E as shown in figure 12. The subse-

quent TGP with the added control edge is shown in

13

figure 13 with the resulting resource envelope showing

the processor utilization over the given TBO period. As

can be seen from figure 13, it is only necessary to effec-

tively move the amount of effort requiring four proces-

sors in such a way as to fill the idle time shown in the

resource envelope. It turns out in this example that this

can be done by delaying task D behind task B (a delay of

67 clock units) in relation to the TGP description of
steady-state behavior. The new TGP diagram can be

derived from the original by shifting all successor tasks

of task D accordingly. The TGP diagram with the added

B "(D precedence relationship shown in figures 14(a)

and (b) results in 100 percent processor utilization. The

new steady-state SGP shown in figure 14(c) can be con-

structed by shifting tasks D, E, C, and F to the right by
67 clock units, as was done to obtain the new TGP

diagram.

F

E

D

C

B

A

1 2

1

2

t + TBO

(a) TGP diagram. TBO = 333 clock units.

t t + TBO

(b) Resource envelope.

Figure 13. Periodic behavior with E "_ C control edge.

Referring to the new SGP diagram in figure 14(c), it

is apparent that this scheduling solution for optimum

throughput and processor utilization has been achieved at

the cost of increasing TBIO. Inserting the B _ D prece-

dence relationship to delay the start of task D behind the

start of task B by 67 clock units, resulting in a TBIO of

667 clock units, is an interesting concept. Since we know

that three processors are sufficient for tasks B and D to
start at the same time for the first iteration, the B _ D

precedence relationship has caused a transient condition.

The reason for this transient becomes apparent by exam-

ining the TGP schedule of figures 14(a) and (b). The

TGP schedule indicates that the nth token (relative data

set number 2) consumed by node D is the (n-l)th

token (relative data set number 1) produced by the prede-

cessor node B; this implies that one initial token is

required on the B-(D control edge, as shown in

figure 14(d), to create the single-TBO delay required to

achieve the steady-state schedule shown in figures 14(a)

and (b). Without the single-TBO synchronization delay

due to the initial token, the path
A-(B-'(C'(D'_ E-'(FwouldresultinaTBIO

equal to the graph TCE of 1000 rather than 667 clock

units (eq. (7)). This is interesting in that the transients

caused by initial data token delays that tend to compli-
cate the analysis become a useful trait for control edges.

Without initial tokens, control edges have only

intra-iteration precedence relationships between two

tasks and consequently provide only limited rescheduling

options. The rescheduling options are those shown by the

SGP diagram between independent tasks. Control edges

properly initialized with tokens result in inter-iteration

relationships between tasks that provide additional

rescheduling options. Such control edges allow one to

choose rescheduling options from the TGP diagram

which can provide more opportunities to find tasks to
delay behind other tasks.

Up to now, a general rule for calculating OF tokens

was not needed because the initial data tokens are given

by the algorithm description as portrayed in figure 9.

However, with the use of control edges it is necessary to

calculate the required number of OF tokens. The ques-
tion that may have been raised about the OE Rule is

what if D s (Tp) -D s (Ts) is a negative number; this

would mean that the tokens bounded to this edge circuit

are initially located in the OF place. Just like any linear

algebra problem with two unknowns, two rules (equa-
tions) are required in order to solve for the total number

of tokens (OE and OF) needed within a given edge cir-
cuit. This second rule is referred to as the "OF Rule"

and determines the number of tokens, if any, initially

required on the forward (OF) edge. The ©F Rule is
stated as follows:

Let S (Ti) and F (Ti) represent the start time

and finish time of the tasks T i, respectively, and

let D s (Ti) represent the relative data set num-

ber associated with the start of task Ti; S (Ti),

14

F

E

c j
1

B

A

l t + TBO

(a) TGP diagram. TBO = 333 clock units.

t + TBO

(b) Resource envelope. TBO = 333 clock units.

F

E -467 ---
D _!_ _ _:::_

C

B

A_
I I I I I

100 200 300 400 500 600

Time, clock units

700

(c) SGP diagram. TBIO = 667 clock units; ¢o = 667 clock units. (d) Modified DFG diagram.

Figure 14. Periodic behavior with E "_ C and B "_ D control edges.

F(Ti), and Ds(Ti) are relative to a TBO

interval as portrayed in the TGP diagram. As for

the OE Rule, these values can be obtained from

the TGP diagram or from equations(15)

and (16) with the addition of

F(Ti) = (ES(Ti) +Li) moduloTBO (17)

Because the data set number associated with the

start of execution will be greater than the data

set number associated with the completion of a

multiply-instantiated task, let Df(Ti) represent

the relative data set number associated with the

finish time of task T i, which can be calculated

with

ES(Ti)+Li (18)Df(ri) = P- TBO

Then, given a task Tp, let T s represent the suc-

cessor task which uses the output data of Tp as

input and OFps be the initial OF tokens required

for the precedence relation Tp "< T s.

If Ds(Ts) -Df(Tp) >_0

Then If S (Ts) < F (Tp)

Then OFps = Ds(T s) -Df(Tp) + 1

Else OFps = D s (Ts) -Df(Tp)

Else OFps = 0

In terms of the graph nodes, a negative

Ds(Ts)-Df(Tp) indicates that the predecessor node
has fired more often than its successor node which is the

frequent case. These tokens are accounted for in the OE

Rule. A difference D s (Ts) -Df(Tp) > 0 represents

the number of times the successor node fires before the

predecessor node completes just once. The only way this

could occur is if there were initial tokens in the OF place.

This difference would therefore be the number of initial

tokens required in the OF place. If S (Ts) > F (Tp), then

the predecessor node would have deposited the one token

required in the OF place for the successor node to fire

again, and thus no additional tokens are needed. How-

ever, the condition S (Ts) < F (Tp) indicates that the

15

successor node must fire before the predecessor node

deposits an OF token. Therefore, the S (Ts) < F (Tp)
condition requires that one extra token be included ini-

tially in the OF place.

Applying the conditions shown in figures 14(a)

and (b), the OF Rule indicates that one initial token is

required on the B "< D control edge as expected from

this discussion. Also, the OF Rule is general enough so

that not only will it compute initial tokens (if any)

required on inter-iteration control edges, but also agree
with initial token conditions on data edges in most cases.

In some cases, initial data tokens may only serve the pur-

pose for which they were intended, that is, to create delay

conditions for computations as portrayed in figure 9.

When initial data tokens also affect the steady-state

schedule, the OF Rule applied to such data edges would
agree with the initial conditions. Just such a case

involves the E "< D in the example graph. As one would

expect, the OF Rule utilizing the TGP of figure 5 for the
E _(D edge results in OFED : 1, which indicates that

one initial token is present. Likewise, the OE Rule spec-

ifies that OEED = 0 indicates that an initially empty
buffer is not necessary at run time, thereby the total

buffer space for edge E _(D is defined as 1. However,

just as the primary purpose of the OE Rule is to compute

the number of data buffers required in addition to the ini-

tial data buffers, the primary purpose of the OF Rule is

to compute initial tokens for inter-iteration control edges.

The OF Rule applied to data edges will only convey

information that the user already knows. Likewise, since

by definition, control edges do not require data buffers,

the OE Rule does not serve a purpose for control edges

unless for some reason the user wanted to implement a

graph management operating system that treated data

edges and control edges the same, except for the attach-

ment of physical buffers.

One last example would be appropriate before pre-

senting the Design Tool which implements the algo-

rithms and rules discussed in this and previous sections.
It has been shown that the addition of the E _ C and

B -(D control edges for a TBO of 333 clock units

results in linear speedup with three processors and a

TBIO equal to 667 clock units. Since this particular solu-
tion includes an initial token in the forward direction of

the B -< D edge, analyzing this graph with the ES and

LF Algorithms should confirm the correctness of the

solution. The modified dataflow graph of figure 14(d)

with the additional control edges is shown in figure 15.
Utilization of the ES A1 gori thm results in earliest start

times of ES(A) = 0, ES(B) = ES(A) + L(A) = 100,

ES(D) = ES(A) + L(A) = 100, ES(E) = ES(D)

+ £(D)= 300, ES(C) = ES(E) + £_(E) = 400, and

ES(F) = ES(C) + _L(C) = ES(B) + £,(B) = 500.

ink

Figure 15. Equivalent MDFG model of figure 14(d).

The first application of the backward search by the

LF Algorithm beginning at the real sink results in lat-

est finish times of LF(F) = ES(sink) = EF(F) = 600,

LF(B) = LF(F) - £.(F) = 500, LF(A) = LF(B)

- £.(B) = 100, LF(C) = LF(B) = 500, LF(E) = min[LF(C)

-f_(C), LF(F) - f_(F)] = 400, LF(D) = LF(E)

- £.(E) = 300, and LF(A) = min[LF(B) - f_(B), LF(C)
- f_.(C), LF(D) - L(D)] = 100.

Next, applying the LF A1 gor± thin beginning at the

virtual sink (D') corresponding to the E "(D data edge
gives an LF time for node E of ES(D) + (1)(TBO) = 100

+ (1)(333) = 433 clock units which is greater than its ear-

liest finish of 400 clock units. Progressing backwards
does not change the latest finish times of nodes A and D.

Finally, applying the LF Algorithm beginning at the
virtual sink (D') corresponding to the B "(D control

edge gives an LF time for node B of ES(D) + (I)(TBO) =

100 + (1)(333) = 433 clock units. However, since the

previous ES analysis indicates that node B cannot com-

plete until 500 clock units, a transient condition has been

found with a A (eq. (5)) equal to 67 clock units. There-

fore, node D initially starts execution as soon as node A

completes during the transient state but at steady state,

node D will be delayed after the completion of node A by

67 clock units. Adding A = 67 clock units to the ES time

along the path D -'(E "_ C -'(F results in adjusted

earliest start times of ES(D)' = 167, ES(E)' = 367,

ES(C)' = 467, and ES(F)' = 567.

Applying the LF Algorithm again at the virtual

sink D' gives an LF(B) = ES(D)'+(1)(333) = 500

equal to the earliest finish time of node B, as expected.

After calculating the latest finish times once more, the

steady-state scheduling contraints in terms of earliest
start and latest finish times are defined. The TBIO is the

earliest start of the sink and is determined to be

EF(F) = ES(F)'+ L(F) = 667 clock units. As a final

check, the TBIO of 667 clock units should agree with

16

TableI.SummaryofDFGAttributesforTBO=333clockunits,TBIO=667clockunits,andR = 3

Task

A

B

C

Latency
100

400

ES

100

LF

100

500

Instantiations
Output

task

D
C
B
D
F

OE OF

100 467 567 1 F 1 0
D 200 167 367 1 E 1 0 1
E 100 367 467 1 C

F

D
F 100 567 667 1 Sink 1 0

Total
buffers

equation (7) which finds the critical path. By

equation(7), the path A_(B"(D_ E-< C_(F

(containing all nodes and 1 initial token) has a total

latency of (TCE - (1)(333)) = 667 clock units and is larg-
est over all paths. Thus, the path A'_ B _ D_(E

<(C _ F is critical. Table I lists the steady-state earli-

est start and latest finish times obtained by applying the

ES and LF Algorithms to the DFG of figure 15. The

reader is invited to construct a single graph play diagram

using the ES times in table I. Likewise, a total graph play

diagram can be constructed by using start times equal to

ES modulo TBO. The SGP and TGP should agree with

figures 14(c) and (a), respectively.

A summary of other DFG attributes for the schedul-

ing solution presented above is also provided in table I.
The attributes listed include task instantiations, data

memory requirements (buffers), and control edges for a
TBO of 333 clock units, while utilizing three processors

100 percent of the time. As noted, this solution is opti-
mum in terms of TBO and processor utilization but is not

optimum in terms of TBIO. Note also that even though

an optimum solution does not exist for this example

where TBO, TBIO, and R are fixed to optimum values,

depending on the real-time constraints of the application,

one could have designed a solution which made other

trade-offs in performance. For example, another solution

might maintain a minimum TBIO of 600 clock units

while letting TBO increase above the lower bound of

333 clock units. In general, depending on the availability

of processors, the user has a two-dimensional region

(TBO by TBIO) in which to make trade-offs. This region

is referred to as an operating point plane in references 5

and 17; ZBOlb and ZllOlb define the minimum values
for the two dimensions, respectively.

5. Design Tool

The algorithms and rules presented in the previous

sections have been shown to be applicable to the analysis

of the class of dataflow graphs described in section 1. A

software tool is presented in this section which analyzes

dataflow graphs and implements these design principles

to aid the user in the implementation of a multiprocessing

application. The software, referred to as the "Dataflow

Design Tool," or "Design Tool" for brevity, was written
in Borland C++ 2 for Microsoft Windows. 3 The software

can be hosted on an i386/486 personal computer or com-

patible. The Design Tool takes input from a text file

which specifies the topology and attributes of the DFG.

A graph-entry tool has been developed to create the DFG

text file. The various displays and features are shown to

provide an automated and interactive design process
which facilitates the selection of a multiprocessor data-

flow solution.

The process flow of the Design Tool, upon loading a

DFG or making modifications to the number of proces-

sors (R), iteration period (TBO), or adding control edges

(new "_), is shown in figure 16. After loading a DFG,

the Design Tool will search the DFG for circuits in order
to determine the minimum iteration period (T O) using

equation (6). The TBO will initially be set to the lower

bound given in equation (8) where T O is zero if no cir-

cuits are present. The calculated R will initially be given

by equation (10). Next, the MDFG is automatically con-
structed due to initial tokens, if present, defined by the

algorithm. All further analysis is based on the MDFG

using the ES Algorithm and LF Algorithm in order
to determine the TBIO, steady-state schedule o) and

buffer requirements (using the OE/OF Rules). Any
changes to TBO, R, or -< results in a reapplication of

the analysis algorithms and rules.

The same dataflow graph example shown in figure 1

is used for demonstration purposes. In this way, the tool

can be presented while verifying the theoretical results

2Version 3.1 by Borland International, Inc.
3Version 3. t by Microsoft Corporation.

17

,r Userinput

[] Output

New--<,R, TBO _"

(T, -.<,_ Mo)

..... II-'_71Critical circuit
I ,_.na,yze oft., I T("17

IC°nstruct MDFG I i--

[_ Earliest start times
Analyze MDFG Latest finish times

Slack time
P

TBIOIbSpeedup
0)I

Adjust schedule [['-{ICritical path

for new --< [TBIO

Create graph 1[] SGP scheduleplay diagrams TGP schedule

resource requirements
envelopes Resource utilization

Figure 16. The design process.

obtained in the previous sections. The initial perfor-

mance analysis, without any graph modifications, in

terms of potential speedup is shown in figure 17 for up to

six processors. The performance display shows speedup

verses the number of processors. The display automati-

cally increases or decreases the abscissa each time the

number of processors R is changed. Figure 17 indicates

that maximum speedup performance is attainable with

four processors; additional processors will not result in

any further speedup. This leveling-off of performance is
attributable to the recurrence loop (circuit) within the

DFG. Without this circuit, the graph-theoretic speedup

would continue to increase linearly with the addition of

processors. Physically speaking, however, this linear
increase in speedup would ultimately break off due to

operating-system overhead, such as synchronization

costs and interprocessor communication.

The Design Tool has a user-interface panel, referred
to as the "Metrics window" as shown in figure 18, con-

Figure 17. Speedup display.

taining buttons and menus for displaying performance

bounds, setting TBO and R, or invoking the various

graphic displays. For example, the display shown in

figure 17 can be invoked by pressing the Perfor-
mance button. The time measurements shown in the

Design Tool windows are given in clock units so that the
resolution of the measurement can be user interpreted.

Upon analyzing the DFG, the Design Tool has deter-
mined that TCE is 1000 clock units. The TBIOlb is

defined by equation (7) based on the graph precedence

relations "< due only to the data dependencies (data-

flow). Due to the critical path A -< B -< F, TBIO/b has
been determined to be 600 clock units. The TBIO will be

equal to TBIOIb until additional control edges are added
with the tool, which may change the critical path. The

TBOlb has been calculated to be 300 clock units based on
the critical circuit D "(E, and consequently, TBO is set

equal to this lower bound. The calculated R is determined

to be 4, which is the optimum number of processors for

repetitive, steady-state execution at the given TBO and
TBIO.

The SGP window shown in figure 18, created by the

Design Tool, shows the steady-state execution for a sin-

gle iteration. The SGP window can be compared with

that of figure 2. Slack time for task C is shown as an

unshaded bar. Although there is slack between the com-

pletion of task E and the start of task F, the recurrence
relation E -< D at a TBO of 300 clock units as deter-

mined by equation (4) has reduced the slack of task E to

zero. The window also displays the two TBO-width seg-
ments with a vertical dashed line. Individually controlled

left and fight cursors (solid vertical lines) are provided

for taking time measurements. Figure 18 shows the cur-

sors measuring the start and duration time of task C to be
100 clock units each (the "100" next to time at the bot-

tom of the display indicates the left-cursor time, whereas
the "100" in parentheses indicates the time between the

left and right cursors).

18

Metrics window SGP window

fi Node Graph

Display _S.et

__N 300

__ 300

Display _elect

F6Node..._!_aph...
" i I

I

E i
I

C

Figure 18. Metrics and SGP window displays.

Display _elect

6 Node Graph
F

E

3

C

B

A 2

TIME 0

2
_*_7{_;?air_'.:_¢_ _1_;_:"_"";!':_:_'_" :_:: _'_i_!_N::'"' NJ _N. ;%" _ :::_::NN _;_ N_:('_

2

_,_i?_ t4;_:_#_ _!_;_,_ _:A_:2,_i,;;_._J ...

1

2

(300)

Name: B

Priority: 1
Max Instances: 2

Latencyc. 400
Read: 5
Process: 390
Write: 5

Earliest Start 100
Latest Hnish: 500
Slack: 0

Inputs: A ->
Outputs: --> F

Figure 19. TGP window.

19

The TGP window shown in figure 19 displays the
steady-state schedule of tasks based on the current TBO

value of 300 clock units. The bars are shaded (with col-

ors or patterns) according to the relative data set numbers
shown above the bars. The TGP window has the same

measurements and viewing features as the SGP window,

including the time cursors. The time cursors are posi-

tioned at the far left- and far fight-hand sides to indicate

the TBO interval of 300 clock units as shown in paren-

theses. The mouse cursor (shown as a band) can be used

within the TGP (and SGP) window to point at a bar for

quick access of information as shown to the fight of the

TGP window in figure 19 for node B. The information

window shows, among other things, that task B requires
two instantiations at a TBO of 300 clock units. This is

also apparent by observing that there are two overlapped
bars associated with task B for relative data sets 1 and 2.

The circuit-imposed zero slack time of task E is por-
trayed in figure 19 by observing that, even though there

is slack between the completion of task E and the start of

task F, task D requires scheduling at the same time task E
completes. Note also that due to the E-< D initial

token, task D will execute on a data set injected one TBO

interval later than the data set produced by the comple-
tion of task E.

Figure 20 shows how processor requirements and

utilization can be shown graphically with a resource

envelope diagram. The Design Tool provides a resource

envelope window for both the SGP and TGP displays
referred to as the "single resource envelope" (SRE) and

"total resource envelope" (TRE), respectively. The TRE

window for the TGP of figure 19 is shown in figure 20.

Processor utilization for any time interval defined

between the left and fight time cursors is automatically

calculated and displayed in a separate window. The pro-
cessor utilization for the entire TBO interval of 300 clock

units is shown in figure 20, indicating that a maximum of

four processors are required with 83.3 percent utilization.
The Utilization window also shows that, within the same

Display .Select

6 Node Graph

4

TIME 0 (300)

4 Processors... 33.3 _,

3 Processors... 100.0 Y.

2 Processors... 100.0

1 Processors... 100.0 Y,

0 Processors... 0.0 %

Computing Effort = 1000

Total Utilization 83.3 %

2O

Figure 20. Total resource envelope window.

timeinterval,threeoutofthefourprocessorsareutilized
100percentof the time andall four processorsare
utilized33.3percentof the time. The Computing
Effort is theareaundertheenvelopecurveandis
equaltoTCE.

A summaryofthetasksystem(T,_(,L, 9Vfo) is given

by a window referred to as the "graph summary window"

shown in figure 21 for the four-processor, 300-clock-unit

TBO performance level. The graph summary window

displays the values of L, ES, LF, slack, and instantiations
(INST) for each task in T along with the initial tokens

and queue sizes for each edge in "(. The ES times shown

in figure 21 are associated with the task start times in

figure 18. It is apparent from this window that task C is
the only task with slack (measured to be 300 clock units)

as already indicated by figure 18. The graph summary
window also indicates the earlier observation that task B

requires two instantiations. The OE/OF column provides
the initial state of the detailed Petri net model of

figure 10 indicating the initial state M o and maximum

queue size, also shown in the QUEUE column. The
QUEUE colunm shows that two buffers are required for

the data associated with edges B -(F and C _ F.

5.1. Design Tool Use in Graph Optimization

As discussed in the previous section, the example

DFG has the potential of having a speedup performance

of 3 with three processors as indicated by figure 15.

However, the precedence relationship '(given by the

dataflow may not lend itself to this analysis in terms of

requiring three processors at a TBO of 334 clock units.

Note that the optimum TBO for three processors is
333 1/3 clock units. The Design Tool maintains the

defined precision by rounding fractional times up to the

next integer value. The graph source will ultimately be

controlled to inject data at a rate 1/TBO determined by

the Design Tool such that predictable performance can
be attained and resource saturation avoided. The clock

resolution used in the actual multiprocessing system is
assumed to be the same as that defined for the tool, and

therefore fractional times are rounded to the next clock

unit for proper input-injection control.

The inclusion of additional precedence constraints in

the form of control edges may reduce the processor

requirements of a DFG for a desired level of perfor-
mance. Since such a problem of finding this optimum

solution is NP-complete and requires an exhaustive

search, the Design Tool was developed to aid the user in

finding appropriate control edges when needed and to
make trade-offs when the optimum solution cannot be

found or does not exist (ref. 9). The design of a solution

for a particular TBO, TBIO, and R is ultimately applica-

tion dependent. That is, one application may dictate that

suboptimal graph latency (TBIO>TBIO/b) may be

traded for maximum throughput (1/TBO/b) while another

application may dictate the opposite. An application may

also specify a control/signal processing sampling period

(TBO) and the time lag between graph input g(t) and

graph output g(t- TBIO) that is greater than the lower

Display

NAME LATENCY ES LF SLACK INST OF/OF QUEUE
A 100 0 100 0 l 110-> D 1 -> D

I I o-> C I -> C
I 10-> B I -> B

B 400 100 500 0 2 210-> F 2-> F

C 100 100 500 300 1 2/0-> F 2-> F

D 200 100 300 0 1 110 -> E 1 -> E

E 100 300 400 0 1 1 / 0 -> F 1-> F
01 1 -> D 1 -> D

F 100 500 600 0 1 1 i 0-> Snk 1 -> Snk

I f / " lr i i

Figure 21. Graph summary window of four-processor schedule shown in figure 19 for TBO = 300 clock units and TBIO = 600 clock units.

21

boundsdeterminedfromgraphanalysis,possiblymaking
it easiertofindaschedulingsolution.

Useof theDesignTool for solvingtheoptimum
three-processorsolutionispresentedasanexamplesince
theresultscanbecomparedwiththetheoreticalresultsin
the previoussection.First, the controledgeE _ C
whicheliminatestheneedlessparallelismfor a single
iterationcanbeaddedfromtheSGPwindowbyselecting
theadd Edgemenuoptionasshownin figure22.Any
controledgeaddedwithintheSGPwindowwillneverbe
initializedwith tokensresultingin only intra-iteration
precedencerelationships.Thisis thedesiredeffectwith
theE -< C relationship.Uponselectingtheadd Edge

menu option, the SGP window will prompt the user for a

terminal node to be delayed by the control edge. Once

the terminal node (task) has been selected as shown in

figure 23, all nodes (tasks) independent of the terminal

node (task C) will be highlighted. These highlighted

nodes become the only candidates for selection as the ini-

tial node. Selection of a dependent node is prohibited

TIME 0 (600)
ii?'!i '? T_--:7-!:_ :,!! iiI _ _

Figure 22. Adding a control edge by using SGP window.

because a circuit would be generated without any tokens;
this is a nonexecutable situation. The use of the informa-

tion window and time cursors may prove useful in mak-

ing use of slack time or delaying tasks such that any

l_isplay __elect

6 Node Gr_aph

E

D
F

C

B

A

Initial Node? ---'> C 1 Node Execution

Path/Circuit

[_i.....ii] independent Node

[.............] loat

Name: E

Priority: 1
Max Instances: 1

Latency: 1O0
Read: 5
Process: 90
Write: 5

Earliest Start: 300
Latest Finish: 434
Slack: 34

Inputs: D ->
Outputs: -> F

-> D

Figure 23. Selecting the initial node of control edge.

22

increaseinTBIOisminimized.SincetaskC,durationof
100clockunits,has300clockunitsof slacktimeand
taskEfinishes100clockunitsshortofthestartoftaskF,
onecaneasilyseethattaskC canbedelayedbehind
taskE withoutincreasingTBIO.Selectionof nodeE
causesthe DesignTool to createthe controledge
E _(C,reapplytheanalysisalgorithms,andcreatethe
expectedSGPshownin figure24.

Thenewperiodicscheduleasa resultof thenew
E -'(C controledgeis shownin figure25(a)withthe
processorutilizationportrayedin theTREwindowof
figure25(b).At thispoint,asearchforadditionalprece-
dencerelationshipsis necessarythatcouldeffectively
movethecomputingeffortrequiringfourprocessorsto
fill in theunderutilizedidletimerequiringonlytwopro-
cessors.Asnotedin section4.4,acontroledgecreating
theprecedencerelationshipB -< Dprovidesasolution.
Additionof thiscontroledgeisdonein thesamewayas
withintheSGPwindow.However,unlikecontroledges
addedwithintheSGPwindow,controledgesaddedfrom
the TGP windowareautomaticallyinitializedwith
tokensasrequiredto assurethe desiredsteady-state
schedule(usingthe0EandOFRules). Insertionofthe
B _(D controledgefrom within theTGPwindow
resultsin thescheduleandprocessorutilizationaspor-
trayedin figures26(a)and(b),respectively.It is appar-
entfromfigure26(a)withthetwoadditionalprecedence
relationships,E '(C andB < D, that anoptimum
solutionfor threeprocessorsin termsof throughputhas
beenfound.Notethat0.6percentof idletimeiscontrib-
utedto theroundingupof theideal3331/3clockunits
TBOto334clockunitsforimplementationpurposes.As
mentioned,this solutionis only optimalin termsof
throughputdueto the66clockunitsdelayof nodeD
(indicatedby theleft andright cursorsin fig.26(a)).
SincenodeD liesin thecriticalpath,thisdelayresultsin
aTBIOof 666clockunits,asshownbytheLFtimeof
taskF in figure27. The graphsummarywindowin
figure27alsodisplaysthecontroledgesaddedforopti-
mization,indicatedbyasterisks.ReferringtotheB -'(D
controledge,theOFequalto 1,representingthepresence
ofoneinitialtoken,characterizesthe inter-iteration rela-

tionship that is required between B and D (one TBO

delay) to assure the desired schedule in figure 26(a), as

expected from the analysis in the previous section.

5.2. Case Study

Another example is given in this section for the pur-

poses of demonstrating the dependence that steady-state

behavior has on '(, Mo, and TBO. The same six-node

graph is utilized except for a different initial marking Mo

and the additional precedence constraint between
nodes C and B as shown in figure 28. These differences

result in a new graph which is referred to as "DFG2."

_sptn.¢ Select

.6 Node Graph

D

C

B

I

i"

TIME 0 (600)

Figure 24. SGP window with control edge E "_ C.

6 Node Graph
I

: 2

D z

!

B t

2

TIME 100 (66)

(a) TGP window.

(b) TRE window.

Figure 25. Windows with control edge E "_ C.

23

Display Select

6 Node Graph
F

C

B 1

A z

TIME 100 (66)

2

_ _ _ _._ .:..,,_._

(a) TGP window.

(b) TRE window.

Figure 26. Windows with control edges E "_ C and B "_ D.

24

Display

NAME t.ATFNCY ES LF SI.ACK INST OEIOF QUEUE
A I00 0 I00 0 I I I0-> D I -> D

2/0-> C 2-> C
I I 0 -> B I -> B

B 400 I00 500 0 2 lll->D 2->D *
210-> F 2-->F

O I00 466 566 0 !

D 200 lfi6 366 0 I

E 100 366 466 0 1

I!0-> F I-> F

1 I0-> E I -> E

110->(3 I .-->C -k
110-> F I-> F

0!1-> D I-> D

F 100 566 666 0 1 110 -> Snk I-> Snk

Figure 27. Optimized graph summary window of three-processor schedule shown in figure 26(a) for TBO = 334 clock units and
TBIO = 666 clock units.

400

200_ 100

Figure 28. DFG2 with initial token on forward-directed edge.

{2tspb_¢

SpeedUp
10 20 3!} 40 5f t_O t_? 67 67

_y

8

..... : _ii_ _._;_ ::_@__i_ _
4 -......... _i_ _i_:.i_b_

1 2 3 4 5 6 3 _. 9

Process(_rs

Figure 29. Speedup potential of figure 28 DFG.

As a result of the additional token in the D _ E cir-

cuit, the graph-theoretic speedup bound has increased;

therefore a speedup capability up to seven processors
(fig. 29) is provided. The initial token on the B "K F

edge affects the steady-state performance differently by

making TBIO and co dependent on the iteration period,

TBO. For the purposes of illustrating this effect, the

scheduling solutions for two different iteration periods

are shown. The first example shown in figure 30, which

requires four processors for a TBO of 250 clock units,

results in a TBIO of 500 clock units (indicated in paren-

theses using the SGP window cursors) which is less than

the graph schedule length of 600 clock units (indicated
next to the Schedule button). At this iteration period,
both tasks B and C have slack time. The slack time of

task B is shown to the left for the convenience of display-

ing an interval equal to the schedule time and because

any delay in the completion of task B affects the execu-

tion (start time of task F) for the next data packet
iteration.

The initial token on the B _(F edge also has the

potential of causing a transient condition such that

25

IL_l,._f low,

Display _et

250

_isptay ._elect Display _elect

Dat_low Critical Path DataF]ow

F ::F

E

D

C

B

A

TIME 0 (500)

Critical Path

A 3

TS'vm 0 (250)
!:!

Figure 30. Dataflow schedule of figure 28 for four processors.

:tOl_!HGraph i'l_ly _

Display _et

___1 _ooo

!ii_N__ 550

Display 5elect

DataFlow Critical Path

F!

E I

t

-. !

!_isptay Select

DataFlow
F

D

F"-] Critical Path

Figure 31. Dataflow schedule of figure 28 for seven processors.

SGPs_ s_eSGPt_s, which has an effect on the

steady-state performance. The second example, shown in

figure 31 for the smallest possible iteration period of

150 clock units for seven processors, results in a sched-

ule length equal to 600 clock units, which is still greater

than the TBIO of the graph; however, the critical path

has changed from the previous example. The Design

Tool has found the critical path to be

A -'(C -(B "(F. Also, the initial token at this TBO

performance has caused task F to delay 50 clock units

26

Display

NAME LATENCY ES LF SLACK INST OEIOF QUEUE
A 100 0 100 0 1 1 I0-> D 1 -> D

1 I 0-> C I-> C
210-> B 2-> B

B 400 200 600 0 3

C 100 100 200 0 1

D 200 100 300 0 2

E 100 300 400 0 I

211 -> F 3 -> F

1 I 0-> B 1-> B
310-> F 3-> F

210-> E 2-> E

1 I 0-> F I -> F
012-> D 2-> D

F 100 450 550 0 1 110 -> Snk 1 -> Snk

'1 I - !i: i: : : : : _: : _ : i,'i : _: ' ::1_

Figure 32. Graph summary of figure 28 for seven processors.

(indicated by the SGP window cursors), as compared

with the case shown in figure 30, resulting in a TBIO

equal to 550 clock units. Because the calculated proces-

sors (eq. (10)) are equal to the seven "sufficient" number

of processors (derived from the TGP window) for the

optimum iteration period of 150 clock units, the

steady-state schedule shown in the TGP window is an

optimum solution for this example task system. The TGP
window also shows that the additional pipeline concur-

rency allows the simultaneous execution of four data

packets within a TBO interval.

Figure 32 shows the task system ('-£, -<, 1:, 9vfo) sum-

mary for a TBO of 150 clock units. The LF of task F with
no slack indicates that the TBIO is 550 clock units. Also,

tasks B and D require three and two instantiations,

respectively. As one might have expected, the queue size

(memory requirements) has increased from the lower

speedup example examined in the previous section

(figs. 20 and 28).

5.3. Algorithm Implementation Performance

The ES Algorithm and the LF Algorithm can

be executed in polynomial time. For typical graphs, the
actual bound is somewhere between O(N 2) and O(N 3)

where equation (1) provides a conservative graph-

dependent bound. The C++ program code for the E5

Algorithm and the LF Algorithm is included in the

appendix. This section provides some performance data

x E

(

<.
Figure 33. Test _aph.

on the execution of these algorithms within the Design
Tool.

The performance results of the ES Algorithm and

LF Algorithm within the Design Tool were obtained

for the graphs in figures 1, 14(d), and 33. The graph in

figure 33 was chosen as a good test when the graph is

tightly connected. Since the three graphs have six nodes
(N = 6) each, the worst-case complexity is given as N 3 or

216. In addition, the graph-dependent bound given by

equation (1) was determined for each graph for compari-
son with the actual complexity. The time it takes to exe-

cute steps 1 through 6 in both the ES Algorithm and
the LF Algorithm is assumed to take a constant time

27

TableII. Design Tool Performance Results

Graph in ES Algorithm LF Algorithm

figure-- Bound C Duration,_s Bound C Duration, _s

1 10 8 297 13 12 665

15(b) 15 10 390 20 18 920

34 64 32 934 64 32 1214

of K 1 and K2, respectively. The actual time complexity C

to complete the ES Algorithm is defined as the num-

ber of times steps l through 6 are executed for a given
graph such that the total execution time is on the order of

KIC. Unlike equation (1) which assumes that all nodes

are traversed for every path, the ES Algorithm and the
LF Algorithm are more efficient in that each remem-

bers the previous nodes and path latency covered at any
given edge branch. Thus, the actual complexity C will be

less than the bound of equation (l) for most cases.

The performance of the Design Tool was measured

on a Gateway2000 486/33 EISA personal computer. The
computer operated with a 33-MHz clock speed and con-

tained 16 MB of RAM memory. From the performance

results given in. table II, the Bound (eq. (1)) and actual

complexity C for the graph in figure 33 without initial

tokens are equivalent for both algorithms. However,

since the backward-search LF Algori thin will encoun-

ter more nodes than the forward-search ES Algorithm

when virtual sinks are present, the Bound and C for the

graph in figures 1 and 14(d) with initial tokens are differ-
ent. Note in all cases, however, that C is less than the

bound given by equation (1) indicating the degree of effi-

ciency in the algorithms.

6. Tool Applications and Future Research

For years, digital signal processing (DSP) systems
have been used to realize digital filters, compute Fourier

transforms, execute data compression algorithms, and a

vast amount of other compute-intensive algorithms.

Today, both government and industry are finding that

computational requirements, especially in real-time sys-

tems, are becoming increasingly more challenging. As a
result, many users are relying on multiprocessing solu-

tions to meet the needs of these problems. To take advan-

tage of multiprocessor architectures, novel methods are

needed to facilitate the mapping of DSP applications

onto multiple processors. Consequently, the DSP market

has exploded with new and innovative DSP hardware

and software architectures which provide mechanisms to

efficiently exploit the parallelism inherent in many DSP

applications. The dataflow paradigm has also been get-

ting considerable attention in the areas of DSP and

real-time systems. The commercial products that are

offered today utilize the dataflow paradigm as a graphi-

cal programming language but do not incorporate data-

flow analyses in designing a multiprocessing solution.

Although there are many advantages to graphical pro-
gramming, the full potential of the dataflow representa-

tion is lost by not utilizing it analytically as well. In the

absence of the analysis/design offered by this software

tool, the commercial tool sets must rely on compile-time

approximate solutions (heuristics) or run-time scheduling

which often results in a trial-and-error design approach.

Not only can this tool lend itself to NASA aerospace
DSP problems, but it is felt that this tool has high com-

mercial potential as well. It could be readily incorporated

into existing commercial DSP tool sets to determine a

desirable multiprocessing solution at compile time. Other

commercial uses of this tool include scheduling of DSP

algorithms for real-time applications, including those

found in aircraft, automotive, and industrial processes.

The tool could also provide front-end scheduling con-

straints for other commercial tools utilizing job-

scheduling algorithms with the potential of finding better
solutions.

Extensions to the Design Tool planned include

incorporating heuristics to automate the selection of con-

trol edges for optimal or near-optimal scheduling solu-
tions. Also, enhancements to the underlying model and

control edge heuristics are planned which will permit the

design of real-time multiprocessing applications for both

hard and soft deadlines (ref. 18). For hard real-time mod-

eling, the design would assume worst-case task latencies.

It has been observed that under such assumptions,

run-time behavior may result in anomalous behavior

such as requiring more processors than indicated from

the worst-case scenario (ref. 19). However, such anoma-

lies can be avoided by inserting additional control edges

which impose stability criteria (ref. 19). Incorporating a

stability criteria algorithm similar to reference 19 would

allow the Design Tool to not only determine control

edges for increased performance, but to also guarantee

hard deadlines. In the context of DSP systems, the

Design Tool is capable of supporting only a single sam-

pling rate per graph. Many DSP algorithms require mul-

tiple sampling rates which is equivalent to graph nodes

consuming and depositing multiple tokens per firing as

28

opposedtoonlyonetoken.Enhancementsareplannedto
thegraph-analysistechniqueswhichwill supportmulti-
plesamplingrateswithinaDSPalgorithm.

7. Concluding Remarks

Graph-searching algorithms were defined and shown

to effectively determine scheduling constraints on a task

system represented by a dataflow graph. The dataflow

graph was shown to determine performance bounds

inherent in the task system, task instantiations, and buffer

requirements for the data shared between tasks. Gantt

charts were shown to be useful in depicting periodic task

schedules, scheduling constraints, processor require-

ments, and processor utilization based on the dataflow

graph analysis. An equivalent modified dataflow graph

was presented for the modeling of initial conditions in

the graph. Such initial conditions were not only shown to

complicate the calculation of task mobility but may also

cause a transient condition. A timing relationship

imposed on the modified graph was shown to separate

the steady-state behavior from the transient state. A soft-

ware implementation of the design algorithms and proce-
dures referred to as the "Design Tool" was presented and

shown to facilitate the selection of a graph-theoretic

multiprocessing solution. The addition of artificial data

dependencies (control edges) was shown to be a viable

technique for improving scheduling performance by
reducing the processor requirements. The selection of an

optimum solution is based on user-selected criteria, that

is, a particular TBO (time between outputs), TBIO (time
between input and output), and R (number of required

processors) or trade-offs when a solution which opti-

mizes all three parameters cannot be found or may not

exist. Optimizations with the use of the Design Tool by

inserting control edges were demoristrated.

NASA Langley Research Center
Hampton, VA 23681-0001
February 1, 1995

29

Appendix

Implementation of ES Algorithm and LF Algorithm

The C++ program code which implements the ES and LF Algorithms is provided in this appendix. These func-

tions are private to the C++ Graph object which constructs and analyzes the dataflow graph. The SearchFwd function

is called by the f indEa r 1 i e s t S t art function to provide a depth-first search of the graph and determine the earliest

start times of all nodes. The SearehBkwd function effectively mirrors the SearchFwd function to provide a

depth-first search of the graph in the opposite direction. The SearchFwd and SearchBkwd functions are used by the

f indLat e s t Finish function to determine the latest finish times of all nodes.

//Declaration of node and edge types

// DATA data edges found in graph text file,

// CONTROL...control edges already present in graph text file,

// NEW control edges added by this tool,

// VIRTUAL...fictitious edges added to model inter-iteration dependencies, and

// SPECIAL...control edges added to source input for input injection control.

enum nodetype { NODE, SOURCE, SINK, VIRTUAL_SOURCE, VIRTUAL_SINK };

enum edgetype { DATA, CONTROL, NEW, VIRTUAL, SPECIAL };

typedef int ClockTicks;

struct Times { ClockTicksread, //time to read input data

process, //time to process data

write, //time to write output data

earliest_start,//earliest possible start time

latest_finish, //latest finish time

fire; }; //time to fire node

class Node { char name[SIZE];

nodetype type;

int number,

graph,

priority,

instances,

data_set;

Times time;

//node name

//node type

//node #

//graph #

//task priority

//required instantiations

//relative data set #

//node times

public:

class Node *previous, *next;

class Edge *input, *output;

public/private methods...; };

class Edge { int number,

token_limit,

tokens,

edgetype type;

//edge #

//queue size = initially empty + initially full

//initial tokens = initially full queue slots

//edge type

public:

class Edge *previous, *next;

class Node *initial, *terminal;

30

class Edge *next_input, *next_output;

public/private methods...; };

// SearchFwd(Edge*, ClockTicks)
// Implements a forward search of the graph starting from an Edge until

// a sink is found. Used by findEarliestStart and findLatestFinish.

void SearchFwd(Edge *edgeptr, ClockTicks latency)

{
while (edgeptr != NULL)

{

if (edgeptr->next_output != NULL)

SearchFwd(edgeptr->next_output, latency);

nodeptr = edgeptr->terminal;

// exclude SPECIAL edges, which terminate on sources

if (edgeptr->terminal->Type() == SOURCE)

return;

if (latency > nodeptr->GetES())

nodeptr->SetES(latency);

if (nodeptr->Type() == NODE)

latency += nodeptr->Latency() ;

edgeptr = nodeptr->output;

} //end while

return;

}//end.

// findEarliestStart()

// Determine the earliest start times of all nodes by searching forward from

// all sources. Calls SearchFwd.

void findEarliestStart()

{

Node *nodeptr;

//initialize earliest start times to zero

for (nodeptr = first_node; nodeptr [= NULL; nodeptr = nodeptr->next;)

nodeptr->SetES(0) ;

nodeptr = first_node;

while (nodeptr != NULL)

{
//find and hold the place of a source

while ((nodeptr->Type() != SOURCE) &&

(nodeptr->Type() [= VIRTUAL_SOURCE) &&

(nodeptr->next != NULL))

nodeptr = nodeptr->next;

31

if ((nodeptr->Type() :: SOURCE) 11

(nodeptr->Type() :: VIRTUAL_SOURCE))

SearchFwd(nodeptr->output, 0);

nodeptr = nodeptr->next;

}//end while

return;

/end.

SearchBkwd(Edge *, ClockTicks)

Implements a backward search of the graph from an Edge until a source is

found. Used by findLatestFinish.

void SearchBkwd(Edge *edgeptr, ClockTicks latency)

{

while (edgeptr != NULL)

{

if (edgeptr->next_input != NULL)

SearchBkwd(edgeptr->next_input, latency);

nodeptr = edgeptr->initial;

//determine latest finish time

if (latency < node_tr->GetLF())

nodeptr->SetLF(latency);

if (nodeptr->Type(:: NODE)

latency -: nodeptr->Latency();

if ((nodeptr->Type() :: SOURCE)] l

(nodeptr->Type() :: VIRTUAL_SOURCE))

return;

edgeptr = nodeptr->input;

}// end while

return;

// end.

/ findLatestFinish()

/ Determine the latest finish times of all nodes by searching backward from

// all sinks. For sinks created from edges with initial tokens, the latest

// finish rule states: LF(Sink) = ES(Nt) + d * TBO where Nt is the terminal

// node of original edge (sink now points to this node) and d is the number of

// initial tokens on the original edge. Calls SearchBkwd and SearchFwd.

void findLatestFinish()

{

ClockTicks ES, LF, delta;

struct Node *nodeptr, *succ_node;

BOOL Done = FALSE;

32

while (!Done)

{

Done = TRUE;

//initialize latest finish times to maximum storage value

for (nodeptr = first node; nodeptr != NULL; nodeptr = nodeptr->next;)

nodeptr->SetLF(0x7FFF);

nodeptr = first_node;

while (nodeptr != NULL)

{

//find and hold the place of a sink

while ((nodeptr->Type() != SINK) &&

(nodeptr->Type() [= VIRTUAL_SINK) &&

(nodeptr->next != NULL))

nodeptr = nodeptr->next;

if ((nodeptr->Type() == SINK) I I

(nodeptr->Type() :: VIRTUAL_SINK))

{
//if sink is a result of initial tokens on an edge then

// LF(sink) = ES(terminal node) + d*TBO

if (nodeptr->Type() == VIRTUAL_SINK)

{

// node receiving tokens from sink

succ_node = getNode(nodeptr->Name());

LF = succ node->GetES() + (nodeptr->input->Tokens() * TBO);

// If delta = EF - LF > 0 then a timing violation has been

// detected. Must increase ES(terminal node) by delta to satisfy

// timing relationship. After doing so, propagate the updated

// ES time to all descendents. Note: EF of initial node is

// equal to ES of sink.

if ((delta = nodeptr->GetES() - LF) > 0)

{

Done = FALSE;

ES = succ_node->GetES() + delta;

//Delay the start time of node

succ_node->SetES(ES);

// Propagate the updated ES to all descendents

SearchFwd(succ_node->output, ES + succ_node->Latency());

LF += delta;

}//end if delta > 0

}//end if virtual sink due to initial tokens

33

else LF = nodeptr->GetES() ;

SearchBkwd(nodeptr->input, LF);

}//end if sink

nodeptr = nodeptr->next;

}//end while more paths

}//end while not Done

return;

}//end.

References

1. Deshpande, Akshay K.; and Kavi, Krishna M.: A Review of

Specification and Verification Methods for Parallel Programs,

Including the Dataflow Approach. Proc. IEEE, vol. 77, no. 12,

Dec. 1989, pp. 1816-1828.

2. Culler, David E.: Resource Requirements of Dataflow Pro-

grams. Proceedings of the 15th Annual International Sympo-

sium on Computer Architecture, IEEE, 1988, pp. 141-150.

3. Parhi, Keshab K.; and Messerschmitt, David G.: Static

Rate-Optimal Scheduling of Iterative Data-Flow Programs Via

Optimum Unfolding. 1EEE Trans. Computers, vol. 40, no. 2,

Feb. 1991, pp. 178-195.

4. Kavi, Krishna M.; Buckles, Billy P.; and Bhat, U. Narayan:

Isomorphisms Between Petri Nets and Dataflow Graphs.

IEEE Trans. Softw. Eng., vol. SE-13, no. 10, Oct. 1987,

pp. 1127-1134.

5. Mielke, R.; Stoughton, J.; Som, S.; Obando, R.; Malekpour,

M.; and Mandala, B.: Algorithm to Architecture Mapping

Model (ATAMM) Multicomputer Operating System Functional

Specification. NASA CR-4339, 1990.

6. Hayes, P. J.; Jones, R. L.; Benz, H. F.; Andrews, A. M.; and

Malckpour, M. R.: Enhanced ATAMM Implementation on a

GVSC Multiprocessor. GOMAC/1992 Digest of Papers, 18 l,

Nov. 1992.

7. Jones, Robert L.; Stoughton, John W.; and Mielke, Roland R.:

Analysis Tool for Concurrent Processing Computer Systems.

IEEE Proceedings of the Southeastcon '91, Volume 2, 1991.

8. Storch, Matthew: A Comparison of Multiprocessor Scheduling

Methods for lterative Data Flow Architectures. NASA

CR- 189730, 1993.

9. Heemstra de Groot, Sonia M.; Gerez, Sabih H.; and Herrmann,

Otto E.: Range-Chart-Guided Iterative Data-Flow Graph

Scheduling. IEEE Trans. Circuits & Syst., vol. 39, no. 5, May

1992, pp. 351-364.

10.

11.

12.

13.

14.

15.

Coffman, E. G., ed.: Computer and Job-Shop Scheduling

Theory. John Wiley & Sons, Inc., 1976.

Som, Sukhamoy; Stoughton, John W.; and Mielke, Roland:

Strategies for Concurrent Processing of Complex Algorithms

in Data Driven Architectures. NASA CR-187450, 1990.

Lee, Edward Ashford: Consistency in Dataflow Graphs. IEEE

Trans. Parallel & Distrib. Syst., vol. 2, no. 2, Apr. 1991,

pp. 223-235.

Som, S.; Mielke, R. R.; and Stoughton, J. W.: Effects of

Resource Saturation in Real-Time Computing on Data Flow

Architectures. Twenty-Fifth Asilomer Conference on Signals,

Systems & Computers, Volume 1, IEEE, 1991,

Mielke, Roland R.; Stoughton, John W.; and Som, Sukhamoy:

Modeling and Optimum Time Performance for Concurrent

Processing. NASA CR-4167, 1988.

Murata, Tadao: Petri Nets: Properties, Analysis and Applica-

tions. Proc. IEEE, vol. 77, no. 4, Apr. 1989, pp. 541-580.

16. Jones, R. L.; Hayes, P. J.; Andrews, A. M.; Som, S.;

Stoughton, J. W.; and Mielke, R. R.: Enhanced ATAMM for

Increased Throughput Performance of Multicomputer Data

Flow Architectures. IEEE Proceeding of the NAECON 91,

Volume 1, 1991.

17. Som, S.; Obando, R.; Mielke, R. R.; and Stoughton, J. W.:

ATAMM: A Computational Model for Real-Time Data Flow

Architectures. Int. J. Mini & Microcomput., voi. 15, no. 1,

1993, pp. 11-22.

18. Stankovic, John A.; and Ramamritham, Krithi: What is Pre-

dictability for Real-Time Systems? Real-Time Syst., vol. 2,

1990, pp. 247-254.

19. Manacher, G. K.: Production and Stabilization of Real-Time

Task Schedules. J. Assoc. Comput. Mach., vol. 14, no. 3, July

1967, pp. 439--465.

35

Form Approved
REPORT DOCUMENTATION PAGE OMeNoo7o4-olee

Publicreportingburdenfor thiscollectionof informationis estimatedto average 1 hourper response,includingthe timefor reviewinginstructions,searchingexistingdata sources,
gatheringand maintainingthe dataneeded,and completing and reviewingthe collection of information.Sendcomments regardingthis burdenestimateor anyotheraspectof this
colleotionofInformation,includingsuggestionsfor reducingthis burden,to WashingtonHeadquartersServices,Directoratefor InformationOperationsand Reports,1215Jefferson
DavisHighway,Suite1204, Arlington,VA22202-4302, andtothe Officeof Managementand Budget,PaperworkReductionProject(0704-0188),Washington,DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 1995 Technical Paper
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Design Tool for Multiprocessor Scheduling and Evaluation of Iterative
Dataflow Algorithms WU 233-01-03

6. AUTHOR(S)

Robert L. Jones Ill

7. PERFORMING ORGANZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORIING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

L-17408

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TP-3491

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 61
Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A graph-theoretic design process and software tool is defined for selecting a multiprocessing scheduling solution
for a class of computational problems. The problems of interest are those that can be described with a dataflow
graph and are intended to be executed repetitively on a set of identical processors. Typical applications include sig-
nal processing and control law problems. Graph-search algorithms and analysis techniques are introduced and
shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The soft-
ware tool applies the design process to a given problem and includes performance optimization through the inclu-
sion of additional precedence constraints among the schedulable tasks.

14. SUBJECT TERMS

Multiprocessing; Real-time processing; Scheduling theory; Graph-theoretical model;
Graph-search algorithms; Dataflow paradigm; Petri net; Performance metrics;
Computer-aided design; Digital signal processing; Control law

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

40
16. PRICE CODE

A03

20. LIMITATION

OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std Z39-18

298-102

